Contents

1 Preface and General Information
 1.1 Contributions and Acknowledgements
 1.2 Features of TURBOMOLE
 1.3 How to Quote Usage of TURBOMOLE
 1.4 Modules and Their Functionality
 1.5 Tools
2 Installation of TURBOMOLE
 2.1 Install TURBOMOLE command line version
  2.1.1 Settings for each user:
  2.1.2 Setting system type and $PATH by hand
  2.1.3 Testing the installation
 2.2 Installation problems: How to solve
3 How to Run TURBOMOLE
 3.1 A ‘Quick and Dirty’ Tutorial
  3.1.1 Single Point Calculations: Running TURBOMOLE Modules
  3.1.2 Energy and Gradient Calculations
  3.1.3 Calculation of Molecular Properties
  3.1.4 Modules and Data Flow
 3.2 Parallel Runs
  3.2.1 Running Parallel Jobs — MPI case
  3.2.2 Running Parallel Jobs — SMP case
4 Preparing your input file with DEFINE
  4.0.3 Universally Available Display Commands in DEFINE
  4.0.4 Specifying Atomic Sets
  4.0.5 control as Input and Output File
  4.0.6 Be Prepared
 4.1 The Geometry Main Menu
  4.1.1 Description of commands
  4.1.2 Internal Coordinate Menu
  4.1.3 Manipulating the Geometry
 4.2 The Atomic Attributes Menu
  4.2.1 Description of the commands
 4.3 Generating MO Start Vectors
  4.3.1 The MO Start Vectors Menu
  4.3.2 Assignment of Occupation Numbers
  4.3.3 Orbital Specification Menu
  4.3.4 Roothaan Parameters
  4.3.5 Start-MOs for broken symmetry treatments ("flip")
 4.4 The General Options Menu
  4.4.1 Important commands
  4.4.2 Special adjustments
  4.4.3 Relax Options
  4.4.4 Definition of External Electrostatic Fields
  4.4.5 Properties
5 Calculation of Molecular Structure and Ab Initio Molecular Dynamics
 5.1 Structure Optimizations using the JOBEX Script
  5.1.1 Options
  5.1.2 Output
 5.2 Program STATPT
  5.2.1 General Information
  5.2.2 Hessian matrix
  5.2.3 Finding Minima
  5.2.4 Finding transition states
 5.3 Program Relax
  5.3.1 Purpose
  5.3.2 Optimization of General Coordinates
  5.3.3 Force Constant Update Algorithms
  5.3.4 Definition of Internal Coordinates
  5.3.5 Structure Optimizations Using Internal Coordinates
  5.3.6 Structure Optimization in Cartesian Coordinates
  5.3.7 Optimization of Basis Sets (SCF only)
  5.3.8 Simultaneous Optimization of Basis Set and Structure
  5.3.9 Optimization of Structure and a Global Scaling Factor
  5.3.10 Conversion from Internal to Cartesian Coordinates
  5.3.11 Conversion of Cartesian Coordinates, Gradients and Force Constants to Internals
  5.3.12 The m-Matrix
  5.3.13 Initialization of Force Constant Matrices
  5.3.14 Look at Results
 5.4 Force Field Calculations
  5.4.1 Purpose
  5.4.2 How to Perform a UFF Calculation
  5.4.3 The UFF implementation
 5.5 Molecular Dynamics Calculations
 5.6 Counterpoise-Corrections using the JOBBSSE Script
  5.6.1 Options
  5.6.2 Output
 5.7 Reaction Path Optimization
  5.7.1 Background and Program structure
  5.7.2 Input Structure
  5.7.3 How it works
6 Hartree–Fock and DFT Calculations
 6.1 Background Theory
 6.2 Exchange-Correlation Functionals Available
 6.3 Restricted Open-Shell Hartree–Fock
  6.3.1 Brief Description
  6.3.2 One Open Shell
  6.3.3 More Than One Open Shell
  6.3.4 Miscellaneous
 6.4 Relativistic effects
  6.4.1 One- and two-component relativistic methods
  6.4.2 How to use
 6.5 Periodic Electrostatic Embedded Cluster Method
  6.5.1 General Information
  6.5.2 Theoretical Background
  6.5.3 Calculation Setup
 6.6 Dispersion Correction for DFT Calculations
7 Hartree–Fock and DFT Response Calculations: Stability, Dynamic Response Properties, and Excited States
 7.1 Functionalities of Escf and Egrad
 7.2 Theoretical Background
 7.3 Implementation
 7.4 How to Perform
  7.4.1 Preliminaries
  7.4.2 Polarizabilities and Optical Rotations
  7.4.3 Stability Analysis
  7.4.4 Vertical Excitation and CD Spectra
  7.4.5 Excited State Geometry Optimizations
  7.4.6 Excited State Force Constant Calculations
  7.4.7 Polarizability Derivatives and Raman Spectra
8 Many body perturbation theory in the GW approximation
 8.1 Theoretical background.
 8.2 GW features.
 8.3 General recipe for G0W0 calculations
9 Second-order Møller–Plesset Perturbation Theory
 9.1 Functionalities of Mpgrad, Rimp2, Ricc2
  9.1.1 How to quote
 9.2 Some Theory
 9.3 How to Prepare and Perform MP2 Calculations
 9.4 General Comments on MP2 Calculations, Practical Hints
 9.5 RI-MP2-F12 Calculations
 9.6 LT-SOS-RI-MP2 with O(N4) scaling costs
10 Second-Order Approximate Coupled-Cluster (CC2) Calculations
 10.1 CC2 Ground-State Energy Calculations
 10.2 Calculation of Excitation Energies
 10.3 First-Order Properties and Gradients
  10.3.1 Ground State Properties, Gradients and Geometries
  10.3.2 Excited State Properties, Gradients and Geometries
  10.3.3 Visualization of densities and Density analysis
  10.3.4 Fast geometry optimizations with RI-SCF based gradients
 10.4 Transition Moments
  10.4.1 Ground to excited state transition moments
  10.4.2 Transition moments between excited states
 10.5 Ground State Second-order Properties with MP2 and CC2
 10.6 Parallel RI-MP2 and RI-CC2 Calculations
 10.7 Spin-component scaling approaches (SCS/SOS)
11 CCSD, CCSD(F12*) and CCSD(T) calculations
 11.1 Characteristics of the Implementation and Computational Demands
12 Random Phase Approximation Calculations: Energy and First-Order Properties
 12.1 Ground State Energy Theory
 12.2 Gradients Theory
 12.3 Further Recommendations
 12.4 Comments on the Output
13 Calculation of Vibrational Frequencies and Vibrational Spectra
 13.1 Analysis of Normal Modes in Terms of Internal Coordinates
 13.2 Calculation of Raman Spectra
 13.3 Vibrational frequencies with fixed atoms using NumForce
 13.4 Interface to hotFCHT
14 First order electron vibration coupling
 14.1 Theoretical background.
 14.2 evib features.
 14.3 General usage of evib
15 Calculation of NMR Shieldings
 15.1 Prerequisites
 15.2 How to Perform a SCF of DFT Calculation
 15.3 How to Perform a MP2 calculation
 15.4 Chemical Shifts
 15.5 Other Features and Known Limitations
16 Molecular Properties, Wavefunction Analysis, and Interfaces to Visualization Tools
 16.1 Wavefunction analysis and Molecular Properties
 16.2 Interfaces to Visualization Tools
17 Frozen Density Embedding calculations
 17.1 Background Theory
 17.2 Frozen Density Embedding calculations using the FDE script
  17.2.1 Options
  17.2.2 FDE with hybrid and orbital-dependent functionals
18 Orbital Dependent Kohn-Sham Density Functional Theory
 18.1 Theoretical Background
 18.2 Implementation
  18.2.1 OEP-EXX
  18.2.2 LHF
 18.3 How to Perform
 18.4 How to plot the exchange potential
 18.5 How to quote
19 Treatment of Solvation Effects with Cosmo
20 Keywords in the control file
 20.1 Introduction
 20.2 Format of Keywords and Comments
  20.2.1 General Keywords
  20.2.2 Keywords for System Specification
  20.2.3 Keywords for redundant internal coordinates in $redund_inp
  20.2.4 Keywords for Module Uff
  20.2.5 Keywords for woelfling
  20.2.6 Keywords for Modules Dscf and Ridft
  20.2.7 Keywords for Periodic Electrostatic Embedded Cluster Method
  20.2.8 Keywords for Cosmo
  20.2.9 Keywords for Modules Grad and Rdgrad
  20.2.10 Keywords for Module Aoforce
  20.2.11 Keywords for Module evib
  20.2.12 Keywords for Module Escf
  20.2.13 GW Keywords
  20.2.14 Keywords for Module rirpa
  20.2.15 Keywords for Module Egrad
  20.2.16 Keywords for Modules Mpgrad and Rimp2
  20.2.17 Keywords for Module Ricc2
  20.2.18 Keywords for Module Relax
  20.2.19 Keywords for Module Statpt
  20.2.20 Keywords for Module Moloch
  20.2.21 Keywords for wave function analysis and generation of plotting data
  20.2.22 Keywords for Module Frog
  20.2.23 Keywords for Module Mpshift
  20.2.24 Keywords for Parallel Runs
21 Sample control files
 21.1 Introduction
 21.2 NH3 Input for a RHF Calculation
 21.3 NO2 input for an unrestricted DFT calculation
 21.4 TaCl5 Input for an RI-DFT Calculation with ECPs
 21.5 Basisset optimization for Nitrogen
 21.6 ROHF of Two Open Shells
22 The Perl-based Test Suite Structure
 22.1 General
 22.2 Running the tests
 22.3 Taking the timings and benchmarking
 22.4 Modes and options of the TTEST script
Bibliography
Index