next up previous contents index
Next: Basis sets Up: How to Quote Usage Previous: How to Quote Usage   Contents   Index

Methods

I.
Electronic Structure Calculations on Workstation Computers: The Program System TURBOMOLE. R. Ahlrichs, M. Bär, M. Häser, H. Horn and
C. Kölmel; Chem. Phys. Letters 162, 165 (1989).
II.
Improvements on the Direct SCF Method. M. Häser and R. Ahlrichs; J. Comput. Chem. 10, 104 (1989).
III.
Semi-direct MP2 Gradient Evaluation on Workstation Computers: The MPGRAD Program. F. Haase and R. Ahlrichs; J. Comp. Chem. 14, 907 (1993).
IV.
Efficient Molecular Numerical Integration Schemes.
O. Treutler and R. Ahlrichs; J. Chem. Phys. 102, 346 (1995).
V.
Stability Analysis for Solutions of the Closed Shell Kohn-Sham Equation. R. Bauernschmitt and R. Ahlrichs; J. Chem. Phys. 104, 9047 (1996).
VI.
Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory.
R. Bauernschmitt and R. Ahlrichs; Chem. Phys. Letters 256, 454 (1996).
VII.
Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions. R. Bauernschmitt, M. Häser, O. Treutler and R. Ahlrichs; Chem. Phys. Letters 264, 573 (1997).
VIII.
RI-MP2: first derivatives and global consistency. F. Weigend and M. Häser; Theor. Chem. Acc. 97, 331 (1997).
IX.
A direct implementation of the GIAO-MBPT(2) method for calculating NMR chemical shifts. Application to the naphthalenium and anthracenium ions. M. Kollwitz and J. Gauss; Chem. Phys. Letters 260, 639 (1996).
X.
Parallelization of Density Functional and RI-Coulomb Approximation in TURBOMOLE. M. v. Arnim and R. Ahlrichs; J. Comp. Chem. 19, 1746 (1998).
XI.
Geometry optimization in generalized natural internal Coordinates.
M. v. Arnim and R. Ahlrichs; J. Chem. Phys. 111, 9183 (1999).
XII.
CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. C. Hättig and F. Weigend; J. Chem. Phys. 113, 5154 (2000).
XIII.
Implementation of RI-CC2 for triplet excitation energies with an application to trans-azobenzene. C. Hättig and Kasper Hald; Phys. Chem. Chem. Phys. 4 2111 (2002).
XIV.
First-order properties for triplet excited states in the approximated Coupled Cluster model CC2 using an explicitly spin coupled basis. C. Hättig, A. Köhn and Kasper Hald; J. Chem. Phys. 116, 5401 (2002) and Vir. J. Nano. Sci. Tech., 5 (2002).
XV.
Transition moments and excited-state first-order properties in the coupled-cluster model CC2 using the resolution-of-the-identity approximation.
C. Hättig and A. Köhn; J. Chem. Phys. 117, 6939 (2002).
XVI.
An efficient implementation of second analytical derivatives for density functional methods. P. Deglmann, F. Furche and R. Ahlrichs; Chem. Phys. Letters 362, 511 (2002).
XVII.
Efficient characterization of stationary points on potential energy surfaces.
P. Deglmann and F. Furche; J. Chem. Phys. 117, 9535 (2002).
XVIII.
An improved method for density functional calculations of the frequency-dependent optical rotation.
S. Grimme, F. Furche and R. Ahlrichs; Chem. Phys. Letters 361,321 (2002).
XIX.
Adiabatic time-dependent density functional methods for excited state properties. F. Furche and R. Ahlrichs; J. Chem. Phys. 117, 7433 (2002), J. Chem. Phys. 121, 12772 (2004) (E).
XX.
A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency. F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002)
XXI.
Geometry optimizations with the coupled-cluster model CC2 using the resolution-of-the-identity approximation. C. Hättig; J. Chem. Phys. 118, 7751, (2003).
XXII.
Analytic gradients for excited states in the coupled-cluster model CC2 employing the resolution-of-the-identity approximation. A. Köhn and C. Hättig; J. Chem. Phys., 119, 5021, (2003).
XXIII.
Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation. M. Sierka, A. Hogekamp and R. Ahlrichs;J. Chem. Phys. 118, 9136, (2003).
XXIV.
Nuclear second analytical derivative calculations using auxiliary basis set expansion. P. Deglmann, K. May, F. Furche and R. Ahlrichs; Chem. Phys. Letters 384, 103, (2004).
XXV.
Efficient evaluation of three-center two-electron integrals over Gaussian functions. R. Ahlrichs; Phys. Chem. Chem. Phys. 6, 5119, (2004).
XXVI.
Analytical time-dependent density functional derivative methods within the RI-J approximation, an approach to excited states of large molecules. D. Rappoport and F. Furche, J. Chem. Phys. 122, 064105 (2005).
XXVII.
Density functional theory for excited states: equilibrium structure and electronic spectra. F. Furche and D. Rappoport, Ch. III of "Computational Photochemistry", Ed. by M. Olivucci, Vol. 16 of "Computational and Theoretical Chemistry", Elsevier, Amsterdam, 2005.
XXVIII.
Structure optimizations for excited states with correlated second-order methods: CC2, CIS(D ), and ADC(2). Christof Hättig, Adv. Quant. Chem., 50, 37-60 (2005).
XXIX.
Distributed memory parallel implementation of energies and gradients for second-order Møller-Plesset perturbation theory with the resolution-of-the-identity approximation. Christof Hättig, Arnim Hellweg, Andreas Köhn, Phys. Chem. Chem. Phys. 8, 1159-1169, (2006).
XXX.
Self-consistent treatment of spin-orbit interactions with efficient Hartree-Fock and density functional methods. Markus K. Armbruster, Florian Weigend, Christoph van Wüllen, Wim Klopper, Phys. Chem. Chem. Phys. 10, 1748 - 1756, (2008).
XXXI.
Quintuple-ζ quality coupled-cluster correlation energies with triple-ζ basis sets. David P. Tew, Wim Klopper, Christian Neiss, Christof Hättig, Phys. Chem. Chem. Phys. 9 921-1930 (2007).
XXXII.
Benchmarking the performance of spin-component scaled CC2 in ground and electronically excited states. Arnim Hellweg, Sarah A. Grün, Christof Hättig, Phys. Chem. Chem. Phys., 10, 4119-4127 (2008).
XXXIII.
Scaled opposite-spin CC2 for ground and excited states with fourth order scaling computational costs. Nina O. C. Winter, Christof Hättig, J. Chem. Phys., 134, 184101 (2011).
XXXIV.
The MP2-F12 Method in the TURBOMOLE Programm Package. Rafal A. Bachorz, Florian A. Bischoff, Andreas Glöß, Christof Hättig, Sebastian Höfener, Wim Klopper, David P. Tew, J. Comput. Chem. 32, 2492-2513 (2011).
XXXV.
Accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12. Christof Hättig, David P. Tew, Andreas Köhn, J. Chem. Phys. 132, 231102 (2010).
XXXVI.
Large scale polarizability calculations using the approximate coupled cluster model CC2 and MP2 combined with the resolution-of-the identity approximation. Daniel H. Friese, Nina O. C. Winter, Patrick Balzerowski, Raffael Schwan, Christof Hättig, J. Chem. Phys., 136, 174106 (2012).


next up previous contents index
Next: Basis sets Up: How to Quote Usage Previous: How to Quote Usage   Contents   Index
TURBOMOLE M