next up previous contents index
Next: Two-component SCF (GHF) Up: LHF Previous: How to do LHF   Contents   Index

For expert users

 
Options for the conjugate-gradient algorithm for the computation of the correction potential: rms-convergence (conj-grad conv=1.d-7), maxium number of iteration (maxit=20), output level output=0-3, asymptotic continuation in each iteration (cgasy=1).

With slater-dtresh= 1.d-9 (default) the calculations of the numerical integrals for the Slater potential is performed only if it changes more than 1.d-9.

Asymptotic regions specification:

corrct-region $ R_F \; \; \Delta_F $
$ 0 \ldots R_F-\Delta_F$ : basis-set correction potential
$ R_F-\Delta_F \ldots R_F+\Delta_F$ : smooth region
$ R_F+\Delta_F \ldots +\infty$ : asymptotic correction
Defaults: $ R_F =10$, $ \Delta_F=0.5 $
slater-region $ R_N \; \; \Delta_N \; \; R'_F \; \;\Delta'_F$
$ 0 \ldots R_N-\Delta_N$ : basis-set Slater potential
$ R_N-\Delta_N \ldots R_N+\Delta_N$ : smoothing region
$ R_N+\Delta_N \ldots R'_F-\Delta'_F$ : numerical Slater
$ R'_F-\Delta'_F \ldots R'_F+\Delta'_F$ : smoothing region
$ R'_F+\Delta'_F \ldots +\infty$ : asymptotic Slater
Note: $ R'_F-\Delta'_F \le R_F-\Delta_F$
Defaults: $ R_N=7$, $ \Delta_N=0.5$, $ R'_F =10$, $ \Delta'_F=0.5$
Use correct-b-region and slater-b-region for the beta spin.



TURBOMOLE